6月11日,中国政府采购网发布海南省公安厅-海南省毒品实验室设备采购项目(进口产品采购论证)公告。根据公告内容,海南省毒品实验室设备采购项目的进口产品采购于2018年06月05日在海口市美兰区蓝天路12号世纪港大厦C1401室进行论证,论证专家共5人。  公告中,详细阐述了选择进口气质联用仪、气相色谱仪、万分之一天平等的原因,包括仪器的指标要求、自动化程度等。此外,还在一定程度上对国产和进口仪器的性能指标进行了对比,详细内容如下:  一、气质联用仪原因阐述:  1、毒品实验室拟购置的气质联用仪用于对毒品犯罪案件提供证据,对数据的准确性和可靠性要求较高,需要购买国际上流行通用的且市场占有率较高的检验设备,以提高检测数据的可比性;  2、国产气质联用仪性能较差(如温度控制、信号采集)。达不到检测技术参数的要求。如进口仪器的压力设定范围:0-100(150)Psi,精度0.001Psi,如国产东西分析GC/MS3100的精度为0.1Psi;  3、国产气质联用仪自动化程度较低。增加检测工作的的劳动强度,并降低检测数据的精确度。如国产东西分析GC/MS3100没有169位的自动进样器;  4、国产气质联用仪检测精度低,检测限较高,且检测准确度教差。距离现产品检测要求高精度、高准确度和高分析灵敏度的数据还有距离。如进口仪器的灵敏度:(用HP-5MS
30mx0.25mmx0.25um
毛细柱测定)全扫描灵敏度(电子轰击源:EI):1pg八氟萘(OFN),(扫描范围:50-300amu),信/噪比≥600:1(分子涡轮泵)选择离子检测(电子轰击源EI):20fg八氟萘,信/噪比≥100:1.
如国产东西分析GC/MS3100的灵敏度为80:1;  由于以上原因,特申请采购进口产品。  专家意见:拟采购的气质联用仪主要用于毒品、毒物等犯罪案件的分析,对检测数据的准确性,可靠性要求较高,设备需具有先进的组分分离能力,灵敏度高、稳定性好,而国内的同类设备在精密度、检出限、检测工作的劳动强度等方面均达不到用户需求,为保证毒品、毒物分析工作的顺利进行,经论证讨论建议采购该类进口产品。  二、气相色谱仪原因阐述:  1、国家标准毒品定量检测必须使用气相色谱仪,毒品实验室为毒品犯罪案件提供法庭科学证据,对数据的可靠性和通用性要求较高;  2、进口气相色谱仪保留时间重现性<0.008%
或<0.0008
min,国内气相达不到;  3、压力设置和控制精密度为0.001PSI,为低压应用提供更好的保留时间锁定精密度。国内气相压力控制不准确;  4、柱箱冷却降温(22
°C 室温),从450 °C 到50 °C 需要4.0
min。(带柱箱插入附件则为3.5min),国内气相降温较慢;  5、分流比可达7500:1,避免色谱柱超载
,国内气相容易色谱柱超载;  6、载气节省模式可以减少气体消耗而不影响仪器的性能7、保留时间锁定功能保证不同地方,不同操作者,不同时间所做样品的可对比性,国内气相做不到。  综上所述特申请购买进口产品。  专家意见:拟采购的气相色谱仪主要用于国家标准毒品的定量检测,对检测数据的可靠性、通用性要求较高,需设备具有选择性较强的分离效果,灵敏度高,保留时间的重现性<0.008%,而国内同类设备在精密度、检出限等方面均达不到用户需求,为保证毒品毒物分析的顺利进行,经论证讨论建议采购该类进口产品。  三、万分之一天平(2台)原因阐述:用于实验样品的准确测量,特别是微量样品的称量  1、中文及多种语言(11种语言)菜单操作界面,方便准确地修改相应参数
;  2、红外感应器(SmartSense),实现无需用手接触的称量操作,轻轻一挥手即可实现开关门、打印、去皮等操作,使称量变得简单、安全,并且避免了交叉污染;  3、彩色智能触摸屏(SmartScreen),实现安全,便捷的天平操作;  4、创新性的悬挂式网格秤盘(SmartGrid),获得快速、准确称量结果;  5、Static
Detect静电检测技术可检测样品和容器上的静电并评估由静电产生的称量误差,如果超出用户设定的极限值则会提供警告;新一体化去静电电极固定到天平上,可去除称量室内的电荷,消除静电对称量结果的影响;  6、LevelGuide水平向导,在天平偏移水平位置时提供警告提示功能,并在触摸屏上显示完整的说明和红绿实时图形化水平泡;  7、易巧称量组件(ErgoClips),安全放置去皮容器,满足使用不同容器的称量需求  8、用户管理工具(UserManagement),可以独立设置操作者的使用权限;  9、MinWeigh最小称量值功能,提供符合规范的称量帮助;  10、SmartTrac动态图形显示,直接显示天平已使用的范围;  11、ProFACT专业级全自动校准技术,温度漂移和时间设置触发的内置砝码自动校准和全自动线性校准,获得精确称量结果;  12、完全可拆卸、清洗的防风罩设计,实现快速清洁;  13、高度可调节的内置防风罩,确保精确称量结果;  14、可移动、分离的显示控制终端,方便天平使用;  15、标配RS232通讯接口和一个可用于蓝牙、以太网、USB、LocalCan、RS232和PS/2通讯接口选件插槽,方便连接打印机、电脑等外围设备
;  16、显示屏保护罩,避免散落样品的腐蚀;  17、具有基础称量、计件称量、配方称量、百分比称量、密度测定、统计功能、差重称量、滴定应用、移液器测试等内置应用程序;  18、ITC内部温度控制,降低温度对于称量结果的影响;  19、StatusLight状态指示灯,通过颜色直观的显示天平是否已准备好开始称量任务,绿色表示就绪,黄色表示警告,红色表示错误;  20、最大称量值:220g;  21、可读性:0.1mg;  22、重复性:0.05mg;  23、线性误差:0.2mg。;  24、稳定时间:1.5s;  25、可通过英特网下载e-Loader
II软件,实现天平软件的实时更新;  26、国产同类产品由于称重传感器的限制,导致对微量样品的称量结果不理想,很难做到准确,且重复性和线性较差,无法满足实际需求。  综上所述特申请购买进口产品。专家意见:拟采购的万分之一天平是毒品实验室为毒品犯罪案件提供数据支撑,目前国产同类产品在准确性、重复性和线性无法满足用户需求,经论证讨论建议采购该类进口产品。

随着移动物联网通信技术的发展和突破,智能计量进入一个新阶段。2017年8月,深圳燃气集团采用NB-IoT技术进行远程抄表试点工作,首批6000用户开户成功,实现了物联网远传抄表等系列功能。  这一试点标志着我国NB-IoT智能燃气仪表走进实际应用阶段。从最初IC卡到最新的NB-IoT燃气表,智能燃气仪表不断在实时传输、安全监控、客户服务端等方面优化,为燃气公司智能化管理和大数据应用奠定了基础。  智能燃气表的发展背景及诞生  燃气表是燃气系统的重要组成部分,对燃气企业的安全运营、服务质量、经济效益等都有着较大的影响。随着经济社会的发展以及天然气阶梯气价政策的实施,新时期燃气企业所面临的入户抄表、安检、监管、调价、结算、事故等问题日益突显。燃气企业一方面要实现发展盈利的目标,另一方面还应及时、准确地将分散的用户数据采集回企业,为后续的经营做决策。燃气计量仪器作为用户用气数据采集的终端设备,是燃气企业实现智能化管理的前提,也是进一步实现大数据服务的关键。传统的燃气表显然已经达不到这样的要求,跨界合作应运而生,借助通讯技术、物联网技术,燃气仪表在智能化的道路上越走越远。  一般理解在燃气基表上加入某些模块,实现数据采集、传输、控制等功能的燃气表可称为智能燃气表。国外的智能燃气表最早1983年在日本使用,我国的智能燃气仪表从1995年研制IC卡表开始起步。目前国内外在智能燃气仪表技术上差距不大,均在物联网智能燃气表阶段发力布局。从智能燃气仪表的发展来看,智能燃气仪表从最初的只能实现预收费和控制功能发展到目前集数据感知、空中储值、查询、远程监控、实时预警等功能为一体的过程一共经历了三个发展阶段。  智能燃气仪表的开端–卡式燃气表  卡式燃气表的功能主要体现在两方面:一是预收费;二是用气控制。其核心在于购气卡,用户与燃气公司之间的交易以及用户使用燃气都是通过购气卡来体现的,通过设置在燃气表中的读卡装置来对购气卡数据进行读取,自动调整燃气阀门的关闭与打开。  在卡式燃气表中,根据购气卡类型的差异,可以将其分为IC卡燃气表、CPU卡燃气表、射频卡燃气表三种。卡式燃气表功能十分完善,主要包括预付费功能、提醒功能、欠费阀门关闭控制功能、补气验证、非法卡识别功能等。通过卡式燃气表的利用,不仅可以解决传统入户收费的弊端,实现了用户的自动缴费,有效避免用户欠费问题,提高燃气使用的安全性。  目前我国最常用的是IC卡燃气表,其是以膜式燃气表为计量基表,以IC卡为媒体,加装电子控制器所组成的一种有预付费功能的燃气计量装置。IC卡燃气表主要由膜式燃气表(基表)、采集信号单元(量值传感器、磁钢)、控制器单元(计费器)、执行器(电磁阀等)、媒体(IC卡)、电源组成。  IC卡表具有自动收费功能,一户一表一卡,用户将费用交给燃气销售部门,销售部门将购气量通过计算机管理系统写入IC卡中,用户将IC卡再插入IC卡燃气表中,便可获得所购燃气量的使用权限。在用户用气的过程中,IC卡智能表中的微电脑自动核减剩余气量,所购气量用尽后便会自动关阀断气,用户需重新购气方能再次使IC卡燃气表开阀供气。  CPU卡在常规IC卡基础上添加CPU智能卡以及嵌入式安全模块ESAM作为数据信息存储和传递的介质,大大提升了卡表的信息储存能力,强化了安全性和抗攻击性,并可实现CPU卡的金融功能。  射频卡在基表基础上加装微电脑芯片和射频卡操作系统,以射频卡为媒介,实现了更多功能,比如:报警提示功能、阀门异常计量功能、防磁干扰功能、一卡多表功能等。  卡式燃气表尽管实现了计量收费和控制功能,但普遍存在着抗干扰能力差、电源不持久、阀门易故障、卡座易损坏等缺陷;卡式表无法实现数据实时传输,燃气公司也无法及时准确的了解用户用气量情况;由于无法实时监管,容易造成用户端燃气事故;如果实施新气价,卡式表需要人工调整其计费方式,工作量大,不利于燃气公司财务及供销差统计。  智能燃气表与通讯技术初次结合–
远传燃气表  远传燃气表是指具有基表数据读取和远传功能的燃气表,其基表数据读取采集是由数据传感器完成的,再利用无线或有线通讯方式,实现基表读取数据与燃气公司收费管理系统中心的信息传输,从而实现对燃气表的远程抄表,在收费管理系统中完成对气量的计算和费用的结算。在远传燃气表中,主要是有线远传表、无线远传表两种类型。  有线抄表系统主要由燃气表、采集器和手持机构成。燃气表通过通信总线与采集器相连,采集器定期采集燃气表数据并存储于芯片中。工作人员通过手持机读取采集器中所存储的燃气表数据并将其上传到燃气企业后台管理系统。  该系统可以实现远程抄读数据、远程监测,有线远传表不需电源、数据传输稳定,解决了抄表难、检测难的问题,但施工布线复杂,施工、安装、维护成本较高,依然需要配备人员去各采集器中下载数据。  无线远传表利用短距离无线网络将燃气表的计量数据传输到电子数据采集器/集中器,采集器/集中器和数据中心之间可以选择GPRS、CDMA、3G或短信的通信方式。短距离无线网路一般采用调制解调通信技术,而智能燃气表远程无线技术中最为常见的有GFSK高斯频移键控技术和LoRa扩频技术。GFSK高斯频移键控技术是把输入数据经高斯低通滤波器预调制滤波后,再进行FSK调制的数字调制方式。它具有恒幅包络、功率谱集中、频谱较窄等特性。LoRa扩频技术是一种专用于无线电调制解调的技术,融合了扩频技术、前向纠错编码技术以及数字信号处理技术,使其传输距离变长,无需中继器,功耗降低,抗干扰性和安全性也得以提高。  无线智能燃气表抄表解决方案也分成了三种形式:  无线手持机抄表方案  无线燃气表通过自身携带的无线通信模块与采集器实现无线通信,采集器定期主动采集燃气表的数据并储存,工作人员通过手持机与采集器通信将表中的数据下载到手持机中。此种抄表系统中的通信方式均为短距离通讯网络。该技术仅仅将有线抄表技术更换成无线通讯,依然需要工作人员定期将数据下载到手持机中,比较落后。  GFSK远程集中抄表方案  GFSK远程集中抄表方案,用集中器代替手持机,进一步减少了人工成本,改善了无线手持机抄表;但集中器的投入以及通信流量费用的产生,造成成本较高。该系统由无线智能燃气表、数据采集器与数据集中器构成,采用GFSK高斯频移键控技术实现燃气表与采集器的通信。无线燃气表与数据采集器采用短距离通信网络,数据采集器与数据集中器之间多采用电力载波通信(利用已布置的电线)或一些标准的自组网网络通信(无线),集中器与燃气企业后台管理系统采用GPRS通信。  LoRa远程集中抄表方案  LoRa技术是由全球知名模拟混合信号与半导体供应商Semtech公司发布的一种专用于无线电调制解调的技术,融合了数字扩频技术、数字处理技术和前向纠错编码技术,拥有前所未有的性能。由于LoRa技术融合了多项先进技术,综合了多种技术的优越性,其最大的特点在于可以在同等功耗下取得更远的通信距离,无需中继器,功耗降低,抗干扰性和安全性也得以提高,主要适用于低速率通信,如燃气表抄表、水表抄表、温湿度监测灯光控制等。  LoRa远程集中抄表方案,由无线智能燃气表、数据集中器构成,主要是利用LoRa所融合的前向纠错编码技术和扩频调制技术。虽然LoRa技术比GFSK技术要性能更优,但LoRa射频芯片的价格比传统调制技术的芯片高许多,提高了智能燃气表的成本,而且存在传输速率和传输的实时性上较差,通信信息量少等问题,需要进一步发展。  尽管远传式的燃气表实现了计量收费与数据传输的功能,但普遍来说燃气表本身并不智能,仅是在普通膜式表的基础上添加了智能转换模块。  远传燃气表都存在以下共性问题:  (1)表具仍按体积计量收费,不能按热值计量收费。  (2)电源问题没有得到根本解决,还需要电池供电。  (3)智能燃气表的成本较高,尤其是短信表,这在一定程度上制约了智能燃气表的推广及应用。  (4)国家还没有建立智能燃气表行业的统一标准体系,这给产品设计、制造、实验、验收、管理等方面带来诸多不便和影响;系统厂商们的开发能力参差不齐,行业内同类产品接口及协议不统一、不兼容,产品形式与功能不规范。这不但增加了抄表的运营维护成本,而且多种数据格式给燃气公司后续的账务平台处理带来了诸多的不便。  智能燃气表的智能化跨越–物联网表  物联网表抄表方案摒弃了短距离、低速率无线网络,转而采用移动通信网络。在有人居住的区域几乎不存在通信盲区,通信费用越来越低,通讯可靠、稳定和安全得到保证。物联网燃气表是通过移动通信运营商的GSM/GPRS无线公网,以膜式燃气表为基础加装电子控制器,实现数据远传及控制的燃气计量器具。  根据物联网通讯技术的不同,物联网表也细分为两个领域:GPRS物联网表和NB-IoT物联网表。  GPRS物联网燃气表是采用物联网技术,以膜式燃气表为基表,加装GPRS通信模块(SIM卡),借助互联网实现其与燃气企业后台管理系统直接通信,具有双向实时通讯、计量、实时监测、实时调价、实现阶梯气价等功能的新型燃气计量仪器。  GPRS(General
Packet Radio
Service,通用无线分组业务)是一种基于GSM系统的无线分组交换技术。物联网表远程抄表系统所采用的GPRS通信技术分为两种:GPRS短信方式通信和GPRS流量方式通信。  (1)采用GPRS短信通信的物联网表远程抄表系统  GPRS短信通信的物联网表通过电信运营商网络与燃气企业后台管理系统直接交换数据,相对于自组网无线通信智能燃气表,通信稳定性高、通信成本低、施工时间短,可以实现远程抄读数据,可以控制燃气表的运行及进行远程监测。;但同时也存在实时性不高、维护升级成本高及电源供电等问题,实现规模应用仍需技术突破与创新。  (2)采用GPRS流量通信的物联网表远程抄表系统  GPRS流量通信的物联网表直接通过GPRS的数据格式发送给基站。相对于GPRS短信通信,实时性更高、传输速度更快;但是也存在着数据量传输过大,功耗较大,电池不能持久的问题,存在电气安全隐患且会产生通信费用。  (3)GPRS物联网燃气表的局限性  相比于一般的具有远传功能的智能燃气表,GRPS物联网燃气表利用公用网络,直接与燃气企业后台管理系统进行交互,可以实现用气量的实时监测及燃气安全的实时监控。但GPRS通信技术应用于智能燃气表上仍存在SIM卡升级困难、网络覆盖范围存在死角、电气安全性差等局限性,实现规模应用仍需技术突破与创新。计量对象天然气具有易燃易爆特性,因此对电气安全的要求较高。GPRS通信方式由于其本身的通信特点,工作电流和发射功率较大,远远超出了燃气表的技术标准要求,存在很大安全隐患。  NB-IoT是指基于蜂窝的窄带物联网(Narrow
Band Internet of
Things),已成为万物互联网络的一个重要分支,作为IoT领域一个新兴的技术,NB-IoT支持低功耗设备在广域网的蜂窝数据连接,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络,以降低部署成本、实现平滑升级。NB-IoT聚焦于低功耗广覆盖(LPWA)物联网市场,是一种可在全球范围内广泛应用的新兴技术,使用1GHz以下的授权频段,可采取带内、保护带或独立载波三种部署方式,与现有网络共存。  NB-IoT技术更适合海量连接、广泛部署,将在以公共事业(包括城市燃气)为重点的智慧城市领域发挥重要作用,其优势主要表现在:  NB-IoT具备五大特点:一是广覆盖,将提供改进的室内覆盖,在同样的频段下,NB-IoT比现有的网络增益20dB,相当于提升了100倍覆盖区域的能力;二是具备支撑海量连接的能力,NB-IoT一个扇区能够支持10万个连接,支持低延时敏感度、超低的设备成本、低设备功耗和优化的网络架构;三是更低功耗,NB-IoT终端模块的待机时间可长达10年;四是更低的模块成本,企业预期的单个接连模块不超过5美元。五是功耗低,仅需配备电池,设备就能运行10年以上,且中途无须充电。  总结与展望  尽管在技术上,智能燃气仪表已经实现了越来越多的功能,但目前我国燃气仪表的市场依然被大多数中低端的普通膜式表和IC卡表占据。虽然旧燃气表更换成智能表的需求潜力巨大,但对燃气公司而言,大范围更换燃气表需要大量资金投入,燃气表全面升级尚需时日。在现阶段,我国多种燃气表并存的现状依然要延续下去。  随着电子信息技术及网络技术的发展,燃气表的智能化和远程管理及服务成为燃气表发展的主要方向,这离不开远程通信技术的支撑,远程通信技术的发展水平直接决定燃气表的智能化和远程管理及服务的实现效果。  可以预见,未来智能燃气表将在数据高效、实时、准确传输,信息安全,能量供给,技术标准等方面持续发力。未来的智能燃气仪表将具有以下特征:(1)有更加成熟的数据安全和网络功能,可实现实时、双向传输,具有在线自校准的能力。(2)和国际接轨,不但有阶梯计价功能,还具有热值计量功能,为消费者和燃气公司提供一个公平的交易平台。(3)能与智能(电)网无缝连接,电池只是起到辅助、备用的作用。(4)在兼容性方面,加入相应的入网协议,使燃气企业用一套控制管理系统可灵活使用各供应商供应的燃气表,提高燃气表选择灵活性及入网运行可靠性。技术上的投入需要市场不断产出,为此,一方面,我们要紧紧抓住技术前沿,实现燃气仪表进一步智能化;另一方面,我们要不断的培育、开拓市场,争取从政策上、市场上推进智能燃气仪表的快速应用。
标签: 智能燃气表

航空发动机叶片几何形状复杂、尺寸跨度大、加工精度要求高等特点决定其成为了航空发动机中加工制造的难点,同时也对航空发动机叶片加工质量检测精度和检测效率提出了更高要求。航空发动机叶片检测技术已逐步从定性检测到定量检测,从接触式检测到非接触式检测,从传统手工检测到自动数字化检测,从二维比对检测到多自由度组合检测,从单一规格大批量检测到多规格小批量检测。航空发动机叶片质量检测方法众多,如标准样板法、自动绘图测量法、光学投影测量、电感测量法、坐标测量法、激光测量法、机器视觉测量法等,其中,三坐标检测凭借通用性强、重复性好、稳定性强、检测精度高等优势在航空叶片制造企业中被广泛应用,但此种方法要求测量时处于恒温环境下且采样效率较低。本文将介绍和评析航空叶片三坐标自动测量研究现状和发展趋势,并基于三坐标测量机(Coordinate
Measuring Machine,CMM)提出一种改进型航空叶片自动测量与控制系统。  1
叶片三坐标自动测量研究现状  (1)基于CAD数模的自动测量  基于CAD数模的三坐标测量是产品设计、加工、测量一体化进程中的重大突破。CMM的测量能力和可操作性在很大程度上取决于测量软件的功能,测量软件决定了CMM可采用的测量方式以及应用范围。目前很多叶片测量软件都具备基于CAD模型脱机编程功能,比如海克斯康PC-DMIS、蔡司Calypso等,并能读入多种文件格式,如IGES、DXF、STL及VDA等格式,也可以兼容UG、Pro/E或CATIA等CAD格式文件。  CMM可实现基于CAD数模的叶片自动测量,待测点的分布和采集、测量路径优化及测量程序生成是自动测量中的关键问题。杨雪荣等结合ARCO
CAD测量软件,实现了对基于CAD数模零件进行自动测量;周保珍等基于UG
CAD提出了沿待测点矢量方向测量的方法,并给出了自动生成DMIS测量程序的方法步骤;刘勇等在前人的成果上基于UG
CAD数模给出了叶片自动测量路径规划系统的操作流程;S.G.Zhang等基于CAD数模特征,在CMM平台上设计了一套检测过程规划原型系统,能极大减少判断探针方向的时间;Hui-Chin
Chang等基于汽轮机叶片CAD数据库,系统通过简单三角函数计算在短时间内能自动生成无碰撞检测路径,并输出DMIS格式文件。  在对三坐标测量系统进行研究总结后,测量程序生成方法主要有以下几种:  ①脱机编程。此方法根据待测件的几何特征和公差要求,用DMIS语言手动编写测量程序,以指导CMM自动测量。但此方法对操作人员专业水平要求较高,编程所需时间长。  ②自学习编程。此方法适合没有CAD数模和设计图纸的情形下,操作较为简单便捷,适合产品大批量测量。在手动测量一次后,三坐标测量软件系统会自动记录测头运动和操作并保存为测量程序,对相同批次的产品可实现自动重复测量。但此时测量软件需要与CMM联机才能完成程序的编制,CMM其他任务将会被占用。  ③自动编程。此方法将CAD数模导入到CMM测量软件中,将工件坐标系(即测量坐标系)与理论坐标系进行对齐后,检测员基于CAD模型进行测量路径规划,测量软件系统按照GD&T设计要求,自动生成DMIS程序,动态虚拟模拟路径无误后自动保存。也可利用三维软件二次开发功能、C#编程语言或VB编程语言等工具,根据三维软件生成的测量前置文件(包含测量点信息和测头信息)开发格式转换程序,直接生成DMIS格式文件,大幅提高测量效率。  在无图纸的情况下实现叶片的批量测量,可基于光学扫描仪完成叶片初始点云数据的采集,然后利用Geomagic
Design
Direct设计软件进行逆向建模,获取初始CAD模型,并导入PC-DMIS测量软件中,以引导CMM进行测量路径自动规划。基于CAD数模的交互自动编程较手工编程而言,效率更快、更清晰直观、方便验证,而且也便于对测量点进行采集和编辑。目前,基于CAD数模自动测量已被国内外先进的CMM测量软件普遍采用。  (2)自动定位夹具  目前,由于航空叶片形状复杂且规格繁多,检测时并没有与之兼容的通用定位夹具。国内很多航空叶片制造企业基于三坐标检测普遍都采用简单支撑固定的方式,以降低制造成本,而且每次只能对单个叶片进行测量,每次都需要对待测叶片进行装夹和粗定位,导致叶片检测效率极低。  针对以上难点,不断开展叶片专用夹具研究,叶建友等提出了柔性相变材料夹具为叶片自动化测量提供保障。定位件和夹紧体位置灵活可调,一套柔性相变材料夹具能装夹一定尺寸范围内任意形状的零件。但该夹具存在准备周期长、刚性不足、手工操作繁琐等问题,同时,仍只能对单一叶片实现定位夹紧,在提升检测效率方面效果并不显著。容器里相变材料反复进行固液态两相变换,膨胀和收缩不可避免,势必影响到夹具的装夹精密度和稳定性。  陈林等设计了一套叶片测量气动专用夹具,利用榫根底面、侧面及内径相面进行6点定位并对底平面实现磁力夹紧,有利于实现叶片测量自动化。该套夹具具有刚性强、定位精准、操作简单等特点,但对于具有轴颈型榫根或枞树型榫根的叶片无法实现固定支撑,且仍只能对单一叶片进行测量。  通过研析现有文献和对叶片企业的实地调研,针对航空叶片夹具设计提出参考规则:①夹具在对工件进行装夹时,能保证工件位置的正确性;②基于某一特征,夹具可对同一规格叶片进行多片装夹定位;③夹紧操作不能损伤叶片;定位要可靠;夹具系统稳定性强,操作简便快速;④使用三坐标测量机进行测量时,夹具必须保证探针对于待测叶片的空间可达性且不发生碰撞;⑤夹具应避免使用吸铁等带有磁性的材料,避免工件或探针收到磁性作用而影响测量结果。  (3)自动测量系统  当前,国内很多叶片加工企业在检测环节没有实现模块化和系统化,特别是在信息共享和自动控制方面能力不足。具体表现在:①测量数据过度离散化,可追溯性较差;②测量过程人机交互多,自动化程度低;③工序质量控制能力弱,产品报废率高。  在工业4.0智能制造的大背景下,海克斯康集团推出了自动化、智能化的测量系统。整个自动化测量系统分为几个物理单元:三坐标测量机、自动控制系统及管理软件、料架系统、零件识别系统、机器人系统、机器人外围系统及安全防护系统。通过信息系统把各单元串联起来,形成有效的集成单元,对测量信息高效管理,并对工序过程进行有效的数据反馈,明显提升生产效率。  智能化作为自动化的高级应用,智能测量系统在工业4.0中扮演重要角色,雷尼绍公司推出搭载第二代REVO多传感器五轴测量系统的大型龙门式三坐标测量机有如下特点:①分辨率提高近20倍;②可加载不同的测量模块;③不仅可以测量大工件大尺寸,也可以测量大工件小尺寸;④采用螺旋扫描,采集点的效率高。  (4)叶片三坐标自动测量发展趋势  三坐标测量技术的不断发展促进了测量行业的进步和变革,也对三坐标测量技术提出了更高要求。在航天航空领域,面向智能制造的高精度动态实时测量技术和飞机大尺寸数字化测量关键技术不断被讨论和研究,其中航空叶片三坐标测量技术的研究方向主要是:①自动化、智能化;②实时监控、可视化;③高速、高精度、高稳定性。  2
叶片自动测量夹具设计  (1)叶片检测现状  以叶片的叶型测量过程为例,无锡某航空叶片企业的检测过程需要的人机交互操作较多,如待检叶片信息的输入,待检叶片的装夹及粗定位、抽调对应的测量程序、PDF文件名及保存路径的输入等,该企业现有检测流程如图1所示。    图1
现有叶型检测流程  在检测过程中,若没有及时的人机交互,CMM就会停机等待操作指令。由于该检测流程仅面向单个叶片,检测效率极其低下,根本无法满足正常的叶片检测需求。  针对上述实际问题有以下解决方案:①增加三坐标测量机以及检测人员数量;②增强企业叶片数控加工系统的可靠性;③引进全过程自动化在线控制检测系统;④优化叶片现有三坐标测量机夹具。  方案①中通过增加检测设备和人力投入显然不符合企业低成本的要求,在设备维护和人员管理上也会耗费巨大;方案②虽然可以改善叶片加工稳定性和精度,减少了叶片检测的任务量,但对于中小型企业来说,短期内很难突破关键技术瓶颈,对企业资金能力、技术能力、检测环境等都提出了更高要求,实施难度大;方案③为目前先进的自动化检测技术,可以实现100%检测并实现零废品率,一定程度上可以降低生产成本,但中小型企业生产规模小,一次性投入太大;方案④是建立在现有设备和人力不变的情况下,通过优化叶片检测夹具来实现叶片测量效率的提升,显然这个方案更加适用于中小型企业。通过对该企业CMM检测过程的实地调研,来找到最合适的解决方案。具体改进后的叶片叶型检测流程见图2。    图2
改进后叶型检测流程  通过电子扫描槍对该待检测叶片工序流转卡进行扫描获取叶片ID号,系统自动在产品工艺数据库中根据叶片ID号检索相关加工工序信息。选择检测对应工序名后,系统自动从该数据库中检索对应工序的测量程序文件地址,从FTP服务器下载测量程序到Calypso测量软件指定文件夹,并保留待检测叶片相关信息至指定文本文件作为该叶片自动保存地址。运行Calypso软件并调取对应测量程序,叶型测量完成后调取Blade
Pro分析软件的同时运行自动保存应用程序,该应用程序捕捉到系统保存窗体的弹出并获取文本文件中保存地址和名称,实现测量报告的自动命名和保存。生成的PDF文件自动上传到FTP服务器,作为该企业的工艺资料储备。生成的TXT文件经过自动转换后导入MySQL工艺数据库,可实现测量数据的精确查询和SPC分析。对于在可控范围内的测量数据,在逆向工程中进行特征数据提取实现叶片三维建模,以指导无图纸工件进行CMM测量路径规划,并生成测量程序完成自动化测量。  (2)自动测量夹具方案  由于该企业三坐标测量机叶片专用夹具一次只能对单一叶片进行装夹定位,针对燕尾型榫根叶片叶型测量,提出一种多片自动测量专用夹具,该装置主要由夹具体、气缸、气缸座、基座、定位销钉、夹紧块、带有9个楔形块结构的矩形轴组成,单元结构如图3所示。    图3
夹具单元结构  该夹具能实现9片叶片联装联测,由原本单个支撑工位线性地扩展成9个联测装夹工位。该工装夹具利用蔡司Calypso和PDFFactory配合连续测量,并最多保存9份检测报告,缓解企业CMM检测能力不足和效率低下的问题。  采用两个定位销钉和一个紧固螺钉连接夹具体与基座;9个夹具体线性分布在基座上,保证间隔不干涉叶片装夹;矩形轴两端均采用滑动副,并带有9个楔形块,楔形块和夹紧块配合形成滑动副。  夹具装夹方式是:夹具体楔形面和燕尾型榫根楔形面配合,模拟叶片装配状态,限制了榫根5个自由度;用定位销钉对榫根侧面进行定位,限制了榫根1个自由度;通过启动气缸推动矩形轴移动,从而使楔形块推动夹紧销钉向上移动,实现对9片叶片同步进行装夹。单个榫根装夹图如图4所示。    图4
单个榫根装夹  以榫根楔形面的中分面(即通过发动机轮毂盘轴线的径向面)工件测量坐标系的XOZ平面,以给定值来确定XOY平面和YOZ平面,以此建立工件测量坐标系(见图5),且该坐标系与建立CAD数模的理论坐标系保持一致。  在对9片叶片进行检测路径规划时,只需要在DMIS文件中在第一片叶片工件坐标系基础上连续偏置一个固定值即可得到其他叶片的工件坐标系。  该夹具具有以下特点:①定位装置尺寸链短,对测量精度影响较小;②多叶片可同步装夹和拆卸,实现批量测量;③采用气动夹紧,实现自动夹紧测量。  图5
建立叶片工件坐标系  小结  本文对航空叶片自动化测量技术研究现状和发展趋势展开论述,总结了基于CAD数模的检测路径规划方法和DMIS文件生成方法和自动测量夹具设计基本准则,结合相应实例对叶片自动检测系统未来趋势做了总结阐述,并针对某航空叶片企业实际情况给出了相应解决方案,提出了改进型叶型测量夹具,极大提高了检测效率。
标签: 三坐标

相关文章